ANALYSIS OF THE FLOW OF AN IRREGULAR
VISCOUS FLUID BETWEEN TWO REVOLVING
CYLINDERS

N. G. Bekin, V. V. Litvinov, UDC 532.135:678.023.5
and V. Yu, Petrushanskii

We propose a mathematical model for the flow of an irregular viscous fluid between two re-
volving cylinders in a bipolar coordinate system. We present an analytic solution of the sys-
tem of equations obtained, and we also obtain formulas for determining velocity fields, tem-
perature fields, and energy characteristics.

A considerable number of native and foreign works [1-6] are devoted to the theoretical and experimental
study of the flow of an irregular viscous fluid between two revolving cylinders, applicable to the processes of
rolling polymers and plastics. In most cases the flow parameters are calculated in an isothermic approxima-
tion [1, 6]. Existing calculation methods, which take heat processes in the flow into account, study only a
small part of the deformation region (section A, Fig. 1), in which the flow is assumed to be one-dimensional.
It is of great practical interest to analyze the process under the condition when the magnitudes of the outlet
coordinate are large (Fig. 1). In this case we must determine all the velocity components. An analytic solu~
tion of this problem is given in the present study.

The steady flow of a viscous incompressible fluid between two revolving cylinders can be described by
a system of equations that contains an equation of continuity, an equation of the conservation of momentum,
and an energy equation [2]:
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AT — pe,viy, T + vile;; = 0. (3)

We assume that the properties of the material itself are described by the rheological equation of Ostwald de
Waele:
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The components of the metric tensor are
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i.e., the coordinate system is orthogonal.

We can write system (1)-(4) in a bipolar coordinate system, since the distances between the poles of the
roller surface coincide with the coordinates +«;, which considerably simplifies the boundary conditions. In
addition, the coordinate grid of the bipolar coordinate system is close to the flow line, so, in expanding the
physical components of the velocity u and v in powers of the small parameter e(which will be further de-
termined), we can assume that one component is € times less than the other:
~d— (Aut) — i (hv) = 0, (5)
B . Oa

Yaroslavl' Polytechnic Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 30, No. 2, pp.
256-262, February, 1976, Original article submitted February 26, 1975,
This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part

of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.

165



ﬂ:dﬁ

S

25,

4

Fig. 1. Scheme of the deformation fegion.
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The projection of Eq. (2) onto the o axis and the component of tensor eg are obtained by the interchange
of indices @ and $ and the simultaneous replacement of the velocity component u by v and vice versa. The
viscosity of most commercial thermoplastics allows us to disregard the inertial terms in the equation of
motion [4]. A characteristic of the problem given is that the distance between the surfaces of the cylinders
is much less than the length of the deformation region. Thus, because of the small parameter* we can as-
sume that € = a(/B'. We introduce the new variables £ = 8/8'; n = a/a, and expand both velocity components
in the small parameter &,

=V E n)+eayE n-..), (9)

v=VienE - (10)
After substituting (9) and (10) into the system of equations (5)-(7) and disregarding terms of order &2,
we obtain the system of equations
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We note that system (11)-(13) transforms to a system of equations in a Cartesian coordinate system,
with the simplifications of boundary-layer theory taken info account [2] if we set h =1. The boundary condi-
tions for the equal velocity of the cylinders of single radius are written as follows:

T1 o = oy,
1) P =4, T = T (ZE(—GO, ao) for ﬁ ﬁ-u
T, a=—0ay

2) to find outlet coordinate 8 we assume that at the outlet of the deformation region the pressure be-
comes zero —P = 0 for g =B, dP/88 = 0;

3) u=V fo o=da;

4) —(—‘i)=u=o for o= 0.
da

* For the case of rollers used in industry, @y = 0.1 —0.05, ' = 2,5 and thus, € = 0,04 —0,02.
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The solution of system (11)-(13)} along with boundary conditions 1)-4) can be obtained by numerical
methods. But the analytic solution of the problem is of great interest, since it would allow us to estimate the
effect of the parameters on the velocity distribution and on the temperature fields in the deformation region.

The dependence of the viscosity of the material on the temperature is described by Eq. {(14). For
thermoplastics the coefficient b is determined experimentally and has the order 0.1-0.03 [1], and so we
limit ourselves to the linear term in the expansion of the exponent

u(T) = poexp{—b(T —To)} = py (1 —86), (14)

where 6 is the relative temperature: 8 =(T — Ty)/Ty. We expand both velocity components, the pressure
gradient, and the relative temperature in powers of the small parameter 6,

ula, By =u,(@, B+ 6u (o, B —..., (15)
v, B) = vy (e, B) + Ovy (e, B) ..., (16)
%p:-a%m_-a-(%a_..., (7)
B, B) =0y (z, B+ 80, (z, B)— ... (18)

After substituting (15)-(18) into the initial system of equations (11)-(13) and setting equal the coefficients
having identical powers of 6, we obtain the following system of equations for 6 in the zeroth power:
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A gsystem similar to (19)-(21) is also obtained for & in the first power. In system (19)-(21) the equation of
motion is independent of the energy equation, i.e., in the first approximation the problem is isothermic.
Thus, by solving Eqgs. (19) and (20) together we determine uy and vg, and we find 64 from Eq. (21). Then 9
is substituted into the equation of motion for 6 in the first power, and 1y and vy are determined. The pro-
cedure is repeated until the given accuracy is reached.

We integrate Eq. (19) over «, and taking boundary condition (4) into account, we obtain

Q= f (hitg) dow = const = Ve, (22)
d

B = ¢ do = .2{1 arctg ’ h-% ctg ( (B ) (23)
cha —cosf o, sin(f)

To determine 9P;/88, we integrate Eq. (20) twice over «, and, by solving it together with (22), we obtain
Vah* = Vhdo' — 5 h? S amt ’ - P {SIgn 9 Py | dada. {24)
i P‘o ' 9B

Equation (24) can be considerably simplified if we expand hinpowersof cosh @ —1/1 — cos 8 and take as the
first term of the expansion

b Aa ’ / . cha —1 o )
1 —cosf L 1 —cosB o
thus, |
OCOV (h —h S S‘ o 1’ __L —_ PO { sign { 0] doda. (25)
i o I ap

After we integrate (25) by parts, since the sign of 8Py/3f agrees with the sign (i* —h), we obtain the pres-
sure distribution in the deformation region,
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thus, both velocity components are
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We study the solution of energy equation (21). We can isolate two zones [3] for the flow in the canals of
viscous materials with low thermal conductivity. In the first zone we exclude the region directly adjoining
the roller, and so the energy balance is maintained in the basic convective heat transfer along the flow and
the dissipation, since the estimation of the Peclet number shows that it has the order 10* —10° in this zone
[4]. In the second zone, directly adjoining the roller, the temperature gradients are considerable and the
thermal conductivity plays a significant role. Thus, we seek the solution of Eq. (21) as a sum of the solutions
of equations that describe the processes in the first and second zones.

We find the solution vof the equation for the first zone:

oc, Ty 305 d ( iy

o T TP VR

n+t1

(29)

We 1ntegrate over B, and we find the temperature distribution in the deformation region where for o= g,

0y = ol ¢ (g, B). In order that boundary condition (1) be satisfied (for example, for the case Ty =Ty = T,), the
solutlon of the equation for the second zone for ¢ = oy must have the form GH = —GI Thus, the general solu-
tionis 6y = 61 + GH Near the roller surface ug = V, so we find vy from the equatlon of continuity,

. %o
voz——;— S‘ (ugh)p do = — —hﬁ(ao—a)

@
We determine the mean velocity u as follows:
ity = Vo h* o uw=Vh*h

"and introduce the new variables (£, n):

§=ﬁ/ﬁ',' i _(5'
1 =0 (% — &), 0= Voch* _ﬁ) : (30)

o~

For polymer materials the dimensionless value of ¢ is of the order of 1072, Thus, the homogeneous part of Eq.
(21), which describes the temperature distribution in the second zone, takes the form
11 11 1t
0%0; h§ 1- 00p . 06 =0, (31)
om: R an ag

We replace the variables once more in order to release the term [éy]n:

13
p =nexp{—Hh/h*}, g= J\exp {-— i—il} dt. (32)
£+
Thus, Eq. (31) takes the form ‘
& g 9 gu_y, (33)
op? og

and the boundary conditions take the form
Bl = —0) for p=0,ie, a= io(.o,'
B =0 for ¢=0.

To solve Eq. (33), we use the operational method of [8]. By transformations we obtain an ordinary differential
equation with respect to p, 2

dpa.eé‘; 80'(5, Plpmo = L(—00(p, 9).

11
s6p =
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Fig. 2. Distribution of a specific pressure in the deformation
region for different values of S+ V = 10.48 cm/sec; 2hy = 0.1
em; R=8 cm;n = 0.2; g = 1.67 kg - sec/em?; dashed curve,
experiment; solid curve, calculation. p, kgf/ em?; x, cm.

Fig. 3. Temperature field in the cross section of a4 minimum
gap: V =15.6 cm/sec; 2hy = 0.1 cm; R=8 cm. For curve 1:
n=0.2; g = 1,67 kg« secl/em®; A = 0.136 keal /m-h-°C; for
curve 2: n= 0.224; pg =1.63 kg - sec/ em?; A = 0.205 keal /m -
h-°C. Points correspond to the experiment. T, °C,

The general solution of this equation is ‘
B = ¢, exp (— V/'sp) + ¢, exp (Vs )

c, = 0, since in the opposite case the solution increases as p — <, Consequently,
' (p, q)=L7{8' (5, O)exp(—1/sp)).

We find the original according to the tables, and, using a Duhamel integral, we write the solution

q

8 (p, 9)= j 6Y (g — 2) Exf ( 5%) dz. (3
4]

In Figs. 2 and 3 we represent the distribution of the specific pressure and temperature in the deformation
region in a 160 X 320-mm laboratory calender for two types of polymer materials. In calculating the termper-
ature field and the pressure distribution in the deformation region as applied to the processing of polymers
on calenders, we can consider the following. It is known that when there is a large reserve of material in the
deformation region of the rollers a so-called "stagnation zone" {"rotating reserve") is formed, in which the
reprocessed material is in circulatory motion until it is drawn into the region where it moves in the direc-
tion of the roller rotation. In solving the given problem, we do not intend to describe the trajectories of the
motion of the material in the ®rotating reserve.”

The flow process in the zone where vy = vy (regions A and B in Fig. 1) has a great effect on the tem-
perature distribution in the deformation region, the specific pressures, and the thrust forces. The calcula-
tion method presented above allows us to determine the flow characteristics in this zone. It is clear that
boundary condition 1) is approximate for negative velocities. However, we see from Fig, 2 that the pressure
distribution satisfactorily agrees with the experimental data both for small (curve 2}, as well as for large
(curve 1), reserves of the material,

Thus, the suggested mathematical model satisfactorily describes the flow of a pseudoplastic material
between two rotating cylinders. The calculations show that for computing the pressure distribution, thrust
forces, and temperature fields in the deformation region, sufficient accuracy for engineering practice is
guaranteed by the system of equations (19}-(21) for & in the zeroth power.

NOTATION

Tij, stress tensor; eij, strain rate tensor; J,, second invariant of tensor eij; h, metric tensor; 2a =
2V.2Rhy, distance between poles; v, projection of velocity on axis @; u, projection of velocity on axis 8; T,
temperature; P, pressure; n, y, rheological constants; pg, viscosity at T = Tg; @y = In{(R * hy)AR —hy)],
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coordinate of roller surface; ',change of 8 coordinate from material entrance into deformation region and
to its outlet; B, = 2 arctan (x+/d) entrance coordinate; B-, outlet coordinate; p, density; A, thermal conduc-
tivity; cy, heat capacity; T;, Ty, temperatures of roller surfaces; 2Q, material discharge; V, speed of roller
surface rotation. .
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INFLUENCE OF GRAVITATIONAL CONVECTION ON THE
PROGRESS OF A HETEROGENEOUS CATALYTIC REACTION
UNDER ISOTHERMAL CONDITIONS

K. V. Pribytkova and E. A, Shtessel’ UDC 536.25

The critical conditions for origination of natural gravitational convection during the progress
of a heterogeneous catalytic reaction are considered. The influence of developed convection
on the reaction progress under isothermal conditions is analyzed.

As is known, the macroscopic velocity of a heterogeneous catalytic reaction depends on the relationship
between the true reaction rate constant and the intensity of mass transfer [1]. The intensity of mass transfer
evidently increases in the presence of gravitational convection. This can resuit in the passage from one mode
of reaction progress to another. In other words. [if the reaction were to proceed in the diffusion domain
without natural convection and the rate of mass transfer were limited.] then the reaction rate can set the
limiting stage for sufficiently strong convection.

This paper is devoted to a clarification of the role of natural gravitational convection in the progress of
a heterogeneous catalytic reaction. However, the solution of this question requires knowledge of the condi--
tions for origination of gravitational convection due to the progress of a heterogeneous catalytic reaction.

1. Critical Conditions for Origination of Convection

Let us consider an infinite plane horizontal layer filled with fluid or gas and bounded by solid bound-
aries. The temperatures on the boundaries are identical and do not vary with time. A catalytic reaction of
the type : )

X
v, A, A, (1)

proceeds on the upper boundary of the layer, where A, is the provisional notation for the initial material, A,
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